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Two-dimensional oscillatory patterns in semiconductors with point contacts
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Planar samples af-GaAs with attached point contacts at different dc voltages may display a variety of
spatiotemporal patterns arising from the dynamics of curved charge dipole waves. Patterns rank from oscilla-
tions due to recycling and motion of simple quasiplanar or cylindrical wave fronts to more complex patterns
that include merging and splitting of different fronts. Results of numerical simulations are interpreted by means
of simple one-dimensional asymptotic theories.
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Self-sustained oscillations of the electric current in dcof the electron, respectivelfE=V ¢ is minus the electric

voltage biased semiconductors presentinly-shaped local  field. We shall write these equations in nondimensional form
current-field characteristics are typically due to recycling andoy adopting Egr, Np, |;=€Er/(eNp)=~0.276 um,
motion of charge density wavé¢s—4]. Typical cases are the | /(uER)~1.02 ps, andEgl;~0.011 V, as the units of
Gunn effect in bulkn-GaAs[5,6], slow current oscillations  fie|d, electron density, length, time, and potential, respec-
in materials where trap dynamics is important such as ultragyely. In these units, we can set all coefficients in the previ-
purep-Ge[7] and semi-insulating GaAs,9], and superlat- oys equations equal to one, except for writing a dimension-
tices[10,11], etc. These self-oscillations may be time peri- |ess diffusion coefficientg~0.013(at 20 K).

odic, qua5|per|od|c_ or cha(_)tlkﬂ,7,1_0—14._ So far, most of The function J(Ii) is already written in dimensionless
the studies deal with quasi-one-dimensional geometries, for

i ) . . _“units. We can write an Ampe’s equation for the total cur-
which the physical and mathematical mechanisms resulting P g

in self-osciliations are reasonably well understood €Nt densityJ, by eliminatingn from Eq.(2) using Eq.(1).
[1,2,15,16. The situation is quite different in two or three " nondimensional form, the result is

space dimensions, where experimental d8tar theoretical
studies are scarce. Two-dimensional geometries can be easily
achieved by attaching point contacts to planar samples, made
out of either bulk materials or of heterostructures in horizon-
tal transport. with V-J=0.

In this paper, we numerically simulate a well-known  gsyndary conditions are chosen as follows. At the inter-
model of the Gunn effectdue to Kroemef6]) on a planar  faces petween semiconductor and contakts,, we assume
sample with point contacts at different voltages. We find &ne normal components of electron current density and elec-

variety of spatiotemporal patterns generated by recycling, . .. . , = o >
motion and interaction of charge dipole waves, which emag\]-trIC field are proportionalOhm's law [2,15), E-N=p(nv

nate from different contacts. Patterns rank from simple quasi 9Vn)-N (N is the unit normal ta® ,, directed towards
one-dimensional patterither one-dimensional Gunn effect the semiconductorFor simplicity, we choose all contact re-
or cylindrically symmetric Gunn effeptto more complex Sistivitiesp to be equal. Bias conditions are chosen toghe

patterns.
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Kroemer’s model consists of the Poisson and charge con- v(E)
tinuity ecluatlons for the co.ncentratl_on gf free carriggkec- VM0.6'-____' X Ohm’s law
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Herev is the carrier drift velocity that is a function of the - L I : : ;
electric field as depicted in Fig. 1. For numerical calcula- o E 1 E 2 3 4 E 2
tions, we shall use the specific form,= MOERJ(E/ER), M cr
where v (E)=E (1+v4E®)/(1+E*), with E=|E|, and Eg FIG. 1. Dimensionless drift velocity curve as a function of elec-

~4 kV/cm. At high fields, the velocity reaches a saturationyic field for two different saturation values, . Contact resistivity is
value, uoErvs. to, D=puoksT/e, €, Np~10" cm™3,and  chosen so that the boundary current dengsitE/p intersectss (E)
e are zero field mobility, diffusion coefficiertassumed to be on its second branch, past the maximug,(v ), as shown in the
constant for simplicity, permittivity, doping, and the charge figure.
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FIG. 2. Upper part: spatial profiles of electron dengisplid -

line) and electric field(dot-dash ling at y=y. andt=t;, exactly

corresponding to the density plot afx,y.,t;) in the 36x6 rect-

angular sample in the lower part of the figure. Outside the dipole
wave and contact regiorisathode on the left, anode on the right, _ ._
separated a distante=30) n=1.

FIG. 4. Details of wave annihilation and creation processes
=0 at cathodeg& . (injecting contactsand ¢= ¢ at anodes when the current trace of Fig. 3 presents a spikpper part of
3, (receiving contacis At the physical boundary of the figure). Lower part, from left to right and top to bottom: electron
Samp|e there are no ContactS, and we adopt homogeneoggnSity profiles at the times marked on the current trace. After the

Neumann condiions therd¢-N=0="¥n.Ki. With these 5 Suelen depii. e cutens b simest orsant e e
conditions, our choice of sample and point contacts, and an P ’ '

initial profile for n att=0, we can start numerical simula- ation of a dipole wave at the cathode, undisturbed motion as
tions of the multidimensional Kroemer’s model. Numerical 5 fiat front towards the anode and annihilation there; see
simulations show the time evolution of current through aFigs. 2—4.
receiving contacti(t)= [y J-NdA, and of the electron den- A more precise analysis of our data shows that the motion
sity profile, n(x,y,t). The latter is depicted in a gray scale of the flat dipole far from the contacts is 1D. In terms of the
that goes from black fon=0 to white for the maximum electric field, the wave is an isosceles triangle of base and
positive value ofn; see Fig. 2. The simplest situation is ob- heightE_ ~2¢=6 if ¢=18, according to the asymptotic
tained when only one cathode and one anode are situated fdeory of Ref.[15], which neglects the field outside the di-
from each other, near the ends of a rectangular sample, as iole wave. Simulation data givés, ~5. The wave velocity
Fig. 2 (Ly=36, L,=6, contact separation is=30). For is V=/(4E,)==w/20~0.157. The wave moves undis-
appropriate bias, the electric current shows self-oscillationsurbed a distancé;,~22 (contact separation is 30, minus
consisting of a periodic array of spikes separated by regionthe size of the wave after nucleatiog,=3, minus the size
where the current is flat; see Fig. 3. These current traces arg the fully formed wave as it arrives at the anodg=5).
typical of the one-dimensiondllD) case[15]. The charge To traverse this distance, the wave should therefore spend a
distribution in Fig. 2 corresponds to times selected on the flatime T, =L, /V~140, which is very similar to that in
portion of the time traces of the curreift) in Fig. 3. Evo- numerical simulations, i.e. 135; see Fig. 3. During its cre-
lution of the electron density corresponds to repeated nucleation, the dipole wave is almost circular. This particular stage
could, therefore, be described by a sample with Corbino

3 symmetry: a circular sample surrounded by a circular anode
and enclosing a point cathode at its cerftef].
i?2 1 It is not necessary to use a Corbino geometry to observe
. ] an axisymmetric Gunn effect. We can achieve this symmetry
placing a cathodéwith ¢»=0) at the center of a square with
0 four anodes symmetrically located near its vertices; see Fig.
0 200 400 ¢ 600 800 1000 5. Notice that the wave is annihilated before it can reach the

anodes: both the wave width and height decrease until it
FIG. 3. Self-oscillations of the current on the rectangular sampledisappears. _ . _
of Fig. 2 for bias¢= 18. Oscillation period isT= 215, i(t) is ap- To understand the axisymmetric case, we can write Eq.
proximately 1.07 during a tim&,;, = 135, corresponding to the trip  (3) in polar coordinates and integrate its radial component
of a planar dipole wave from cathode to anode. The current spikavith respect to the polar angle. The result is
(lasting T,¢ic;=80) appears during wave creation and annihilation
1 a(rE)} 5 d[1a(rE)

rooor

at contacts. Extrema aft) arei,,—=2.56 andi,;,=0.87. In this E%-v(E) 142 7
and successive figures, the scald(Of has been divided by 50. at r oJar ar
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FIG. 6. Electric field profile and asymptotic approximations of
the leading front and the outer fielR,(t), position of shock wave;
R(t), position of the intersection between leading front and outside
field; E(t), wave height;E_(t), outside field atr =Ry(t); field
outside wave is)(t)/r. At r=r,(t), the field in the leading front
vanishes.

FIG. 5. Upper part: current traces for the axisymmetric case
The sample is a square of sitle=18, with a central cathoded(
=0) and four identical anodesh= 18) atd=3 from its boundary.
Distance between cathode and one anode=<l5//2~10.6. Os-
cillation period, maximum, and minimum values of the current are
T=77.5, ima=2.47, andi;,=0.79, respectively. Lower part of
figure, from left to right and top to bottom: Density plots corre-
sponding to the times 0, 36, 50, 64, 66, and 69 marked in the upp
part. dr, J
Here the total current density is directed along the radial W_G' )
direction, and the functiod depends only on time. The bias
condition is simplyf ;2E(r,t)dr= ¢, wherer . andr , are the ~ Thenr,,(t)=y2[J(t)dt instead of fJ(t)dt, as in the 1D

c . o .
contact radii in a Corbino geometry. In terms of the pointc_ase[ls]' The velocity of the trailing frontdR,(t)/dt, is
contacts located at the origiwenter of the square sample 91Ven by the equal area rule é?r shock wayes], dR/dt
and atx®¥, k=1,2,3,4,r, is the radius of a point contact, ~ V(E+ E-)=[U(E.—E_)]fg'v(E)dE. If  0vs=0,
while r,=|x®)| - ... We want to understand the more salient V(E.. ,E ) = 3 (arctarE? —arctarE? )/(E, —E_), which gives
features of the Gunn oscillation in this case: the shapétdf
and the fact that the dipole wave vanishes before reaching ﬁz T
the anode. It is easier to understand the case whgir, dt 4E,’
>1, for dipole waves are detached from the contacts most of ) ) o )
the time. To analyze the Gunn effect, we need to study th&henE,>1>E_ (which occurs in the limit we are consid-
boundary layers near inner and outer contacts, and to de€ring. Thus the trailing front velocity is small and small
scribe a dipole wave far from them. These analysis are fairlyvaves move faster than large ones.
technical, so that we will give here few indications opl]. Typically in our simulations, we have the following rela-
A dipole wave detached from the contacts is a straight tritionr,,>(r,,—Ry,)>1. In this limit, the slope of the electric
angle of heightE, —E_ and baseR,—R,, which are all field in the leading front, given by Ed5), is —1, so that
time-dependent parameters. It is made of a trailing front aE(r,t)~r,—r inside the dipole wave andR,—R,=E,
r=Ry(t), which is a shock wavémoving at a speed given —E_~E, . Then, asE[Ry(t),t]=E.(t) in the leading
by the equal area ruleand a leading front at=R(t), front, we have:
which is a region depleted of electrofisb]. We shall see that
the trailing front increases its speed as it advances, whereas E.(t)=r,(1)—Ry(1), (8
the speed of the leading front decreases. This explains why _
the wave vanishes before reaching the anodeich is far ~ and furthermord? ~r,,. As the dipole moves , decreases
from the cathode The electron density at the leading front is becausedr,,/dt<dR,/dt, and the wave vanishes before ar-
almost zero, so that the field obeys the Poisson equation, iving at the anode. Notice that E¢), (7), and(8) imply
=1+r"19(rE)/ar, with n=0, which yields: that the area inside the dipol@sin~Ei/2, decreases as
doi, /dt=JE  Ir,,— 7/4.

To determine the shape of the current traced)
=2mJ(t), we need an additional evolution equation for

Here the constant of integratian,(t) is the intersection be-
tween the prolongation of the leading front and thaxis.
See Fig. 6.

The velocity of the leading frontr,,/dt, can be obtained
Ay insertion of Eq(5) andn=0 into Eq.(4), which yields

()

2 2
ro(t)y—r
E(r,t)=—

oy re[Ry(1),Ri(1)]. )
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’ obtained by time differencing the bias conditioth= ¢;,
+ dout, With the result

(©)

a1 (7 JE
dt In(ra/ro) 4 1y,

When the wave is far from the cathode, the second term in
the right hand side of this equation is small compared with
the first one. Then] is approximately linear, with slope
/[ 4In(ry/ro)]. This behavior can be observed in Fig. 5. Af-
ter the dipole vanishes, a new wave is nucleated at the cath-
ode, and this process explains the shape of the current trace
during the rest of one oscillation period. The description of
this latter process is more technical and it will be published
elsewhere.

More complicated patterns can be obtained by playing
with the number and location of point contacts. Figure 7
shows a sample with two cathodes and two anodes located at
the vertices of a square. Axisymmetric waves are nucleated
at the cathodes, collide, form a eight shaped wave, which
later disappears. The resulting self-oscillation of the current
is also shown in Fig. 7.

In conclusion, we have presented a humber of spatiotem-
poral patterns associated to Gunn self-oscillations of the cur-
rent in rectangular samples with point contacts. Several fea-
fures of these oscillations can be interpreted in the light of
the known theory for 1D samples and its extension to axi-
symmetric geometries sketched here. Finding a general

eory of these patterns is clearly a worthwhile future inves-
Igation.

FIG. 7. Same as in Fig. 5 for a configuration with two cathodes
(¢=0) and two anodesd#=26) placed at the vertices of a square.
Sample side i4 =28. Oscillation period, maxima, and minima are
T=105.2,i hax=2.17, and ,;,= 0.74, respectively. Density plots in
the lower part of the figure correspond to the times 0, 11, 37, 39, 4
and 47 marked in the upper part.

Outside the wave, the electric field on the decreasing ram
solves Eq.(4) with negligible space and time derivatives.
Thenv (E)=J/r, which impliesE(r,t) =E,(J/r) outside the  \ye thank F. J. Higuera, B. GaesArchilla, and I. R. Can-
wave. IfJ<r, the first branch of (E) is linear, and we have tgjapiedra for helpful discussions. R. E. acknowledges sup-
E(r,t)=~Jd/r. The area under this stationary field profile is port of the Fundacio Carlos IIl. This work has been sup-
d;out:f::El(J/r) dr=~Jin(r,/r,). The equation fod is now  ported by the Spanish DGES Grant No. PB98-0142-C04-01.
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